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L E T T E R S  TO T H E  E D I T O R  

EFFECT OF THE FREE SURFACE ON CALCULATED STRESS DROPS 

BY DAVID l~/~. BOORE AND W. SCOTT DUNBAR 

INTRODUCTION 

In converting moment (or average displacement/)) and fault dimensions to stress 
drop, An, an equation of the form 

Aa = C~(D/1) (1) 

is usually used, where ~ is the rigidity of the medium and l is a measure of fault di- 
mension. C, a numerical factor related to the shape of the fault, is determined by the 
solution to the crack problem in which constant stress is applied over the faces of the 
fault. For faults imbedded in an infinite medium 

C = 7~/16 (2) 

l = R (3) 

for a circular fault of radius R (Keylis-Borok, 1959) and 

c = 4/~ (4) 

z = w (5)  

for a two-dimensional fault of width W and dislocation along the long axis (Knopoff, 
1958). Due to the complicating effect of the free surface, the shape factor C for a 
fault near the free surface is readily available only when the two-dimensional fault 
just discussed breaks to the surface. In this ease the l factor given by equation (5) 
applies if 

c = 2 / ~  (6) 

(Chinnery, 1969; Kanamori and Anderson, 1975). Alternatively, the shape factor 
could be given by equation (6), with the l factor equal to the half-width for buried 
faults and the total width for faults which break to the surface. In either case, the 
inferred stress drap on a long fault with given width W and average displacement 
b will differ by a factor of 2 depending on whether the fault breaks the surface or is 
deeply buried (assuming the same rigidity). The question arises as to which shape 
factor (or 1 factor) should be used for shallow faults which do not break to the sur- 
face. This is an important question, for a number of shallow earthquakes seem to 
have larger displacements at depth than would be inferred from surface observations 
(e.g., 1952 Kern County, Hanks et al., 1975; 1966 Parkfield, Seholz et al., 1969). 

RESULTS 

To answer this question for rectangular, vertical strike-slip faults, we solved for the 
fault displacement, and thus the average slip, consistent with a constant stress drop 
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for various depths h to the upper edge of the fault from the free surface. In  keeping 
with Knopoff's model we define l = W (fault width) and determine C from equation 
(1), as a function of Az, #, W, L, i),  where L = fault length. A Poisson solid is as- 
sumed. The computations leading to the average slip are based on a discretization of 
the fault area into a number of segments and the use of a Green's function giving 
the stress at a point due to a rectangular fault with constant displacement buried in 
a half space. The constant slip on each fault segment is determined such that  the 
stress in the center of each segment, due to a superposition of stresses from all of the 
segments, is constant. Details can be found in Dunbar  (1977). 

The results are shown in Figure 1 for a range of length-to-width ratios and burial 
depths (normalized by  fault width). The influence of the free surface diminishes rapidly 
as the depth of burial increases. For  depths greater than 0.1 of the fault width the C 
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FIo. 1. Shape factors for a vertical strike-slip fault as a function of normalized depth of burial 

for various L/W ratios, assuming a constant stress drop over the fault surface. The h/W = 0 
values are indicated by tick marks. 

factor is within 16 per cent of the infinite media result. This is consistent with the 
results of Oda and Hirasawa (1976) who solved a similar problem for L / W  = oo. 
In  many cases, then, stress drops on shallow faults can be estimated from the infinite 
media results. We also see that  for practical purposes faults with L / W  greater than 
about 5 can be t reated as two-dimensional (infinitely long) faults. 

DISCUSSION 

Similar computations can be made for dip-slip faults of arbi trary orientation, but  
as Chinnery (1969) noted, the symmetry of the stress tensor can lead to inconsistencies 
between the zero stress free surface and the finite stress acting on the fault surface, 
especially if the fault intersects the earth's surface. In other words, a dip-slip fault 
with constant stress across its surface may be unphysicaI. I t  should be noted, however, 
tha t  although these inconsistencies do not exist in the case of an infinitely long strike- 
slip fault, they may enter to some extent in our calculations for finite faults, especially 
near the fault ends. Furthermore, although the sensitivity of the results to the burial 
depth is mathematically correct for the problem as stated, large stresses will exist in 
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the region between the surface and the fault, and we would expect the fault to break 
to the surface. The observational fact tha t  this does not always happen for shallow 
faults may  be related to the decrease in rigidity usually found near the earth's surface. 
This may  mean that  the transition between the free surface and infinite media C 
factors will be less rapid than shown in Figure 1. Finally, as Madariaga (1977) pointed 
out, the stress drop determined from equation (1) may  not correspond to the real 
average stress drop across faults in which the stress drops are not constant over the 
surface. The variable stress changes can lead to large differences in the shape factors. 
For  example, Table 1 shows the shape factor relating the peak stress drop to the aver- 

TABLE 1 

VALUES OF C FOR A STRIKESLIP FAULT IN AN INFINITE MEDIUM, 

WHERE Aa- OF EQUATION ( 1 ) I S  THE MAXIMUM 

STRESS DROP ON THE FAULT SURFACE 

Length/Width 
Author 

1 2 5 oo 

Chinnery (1969) 1.1 0.8 0.6 0.6 
Sato (1972) 3.4 2.4 1.9 1.9 

C is defined in equation (1) with l equal to the total 
fault width./) is the average slip on the fault. 

TABLE 2 
VALUES OF C FOR A STRIKESLIP FAULT IN AN INFINITE MEDIUM 

WHERE Ao- OF EQUATION (1) IS THE AVERAGE STRESS 

CHANGE ON THE SLIP SURFACE 

Author 
Length/Width 

1 2 5 

Sato (1972) 0.4 0.3 0.2 0.4 
This paper 2.1 1.4 1.3 1.3 
Knopoff (1958) - -  - -  - -  1.3 
Keylis-Borok* (1959) 2.4 - -  - -  - -  

* Circular fault, converted to an equivalent square fault using 
equations (1), (2), and (3) with R = W / v ' ; .  

age slip in models in which the slip is constant (Chinnery, 1969) and in which the 
slip D ( x ,  y)  goes as 

D ( x ,  y )  = k f - ) [ (WI2)  2 - x~]512[(L/2) 2 - -  y21512 

where k is a normalization factor and x, y are distances from the center of the fault 
(Sato, 1972). Table 2 shows the shape factors when average stress change over the 
fault surface rather than peak stress drop is used in equation (1) to define C. The 
Knopoff and Keylis-Borok models assumed constant stress drop and thus are close 
to our results for the appropriate L / W  ratio. As is clear from the tables, a wide range 
of stress estimates can be obtained from a given size fault and mean dislocation. 
Most published stress drops seem to rely on the shape factors given by the constant 
stress drop models. 
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In  spite of the qualifications above, stress drops determined from equation (1) 
continue to be made, and in view of this we feel it important  to define the appropriate 
shape factor in cases where shallow faults may not reach the surfac ~,. The stress drop 
so determined may not correspond to the actual average change in stress across the 
fault being studied, but it will be consistent with most of the stress drops reported in 
the literature. 
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